Friday, 26 December 2014

HEPATITIS B




Hepatitis B is an infectious disease caused by the hepatitis B virus (HBV) which affects the liver. It causes both acute and chronic infections. Many people have no symptoms during the initial infection. Some develop a rapid onset of sickness with vomiting, yellow skin, feeling tired, dark urine and abdominal pain.Often these symptoms last a few weeks and rarely does the initial infection result in death. It may take 30 to 180 days for symptoms to begin. In those who get infected around the time of birth 90% develop chronic hepatitis B while less than 10% of those infected after the age of five do. Most of those with chronic disease have no symptoms; however, cirrhosis and liver cancer may eventually develop. These complications results in the death of 15 to 25% of those with chronic disease.
healthy-and-diseased-liver
healthy and diseased liver

Risk factors include: working in healthcare, blood transfusions, dialysis, living with an infected person, travel in countries where the infection rate is high, and living in an institution. The hepatitis B viruses cannot be spread by holding hands, sharing eating utensils, kissing, hugging, coughing, sneezing, or breastfeeding. The infection can be diagnosed 30 to 60 days after exposure. Diagnosis is typically by testing the blood for parts of the virus and for antibodies against the virus. Five hepatitis viruses are known A, B, C, D, and E.
The infection has been preventable by vaccination since 1984. Vaccination is recommended by the World Health Organization in the first day of life if possible. Two or three more doses are required at a latter time for full effect. This vaccine works about 95% of the time. About 180 countries gave the vaccine as part of national programs as of 2006. It is also recommended that all blood be tested for hepatitis B before transfusion and condoms be used to prevent infection.

hepatitis-B-virus
hepatitis B virus

About a third of the world population has been infected at one point in their lives, including 240 million to 350 million who have chronic infections. Over 750,000 people die of hepatitis B each year.

 

MODE  OF TRANSMISSION

Transmission of hepatitis B virus results from exposure to infectious blood or body fluids containing blood. Possible forms of transmission include sexual contact, blood transfusions and transfusion with other human blood products, re-use of contaminate needles and syringes, and vertical transmission from mother to child (MTCT) during childbirth. Without intervention, a mother who is positive for HBsAg confers a 20% risk of passing the infection to her offspring at the time of birth. This risk is as high as 90% if the mother is also positive for HBeAg. HBV can be transmitted between family members within households, possibly by contact of nonintact skin or mucous membrane with secretions or saliva containing HBV.

 Signs and symptoms

Acute infection with hepatitis B virus is associated with acute viral hepatitis – an illness that begins with general ill-health, loss of appetite, nausea, vomiting, body aches, mild fever, and dark urine, and then progresses to development of jaundice. It has been noted that itchy skin has been an indication as a possible symptom of all hepatitis virus types. The illness lasts for a few weeks and then gradually improves in most affected people. A few people may have more severe liver disease (fulminant hepatic failure), and may die as a result.
Chronic infection with hepatitis B virus either may be asymptomatic or may be associated with a chronic inflammation of the liver (chronic hepatitis), leading to cirrhosis over a period of several years. This type of infection dramatically increases the incidence of hepatocellular carcinoma (liver cancer).Chronic carriers are encouraged to avoid consuming alcohol as it increases their risk for cirrhosis and liver cancer.
 The clinical features are feverand skin rash. The symptoms often subside shortly after the onset of jaundice, but can persist throughout the duration of acute hepatitis B.
hepatitis-B-virus
hepatitis B virus
Diagnosis
 Hepatitis B viral antigens and antibodies are detectable in the blood following acute infection.

Hepatitis B viral antigens and antibodies are detectable in the blood of a chronically infected person.
The tests, called assays, for detection of hepatitis B virus infection involve serum or blood tests that detect either viral antigens (proteins produced by the virus) or antibodies produced by the host. Interpretation of these assays is complex.
The hepatitis B surface antigen (HBsAg) is most frequently used to screen for the presence of this infection. It is the first detectable viral antigen to appear during infection. However, early in an infection, this antigen may not be present and it may be undetectable later in the infection as it is being cleared by the host. The infectious virion contains an inner "core particle" enclosing viral genome. The icosahedral core particle is made of 180 or 240 copies of core protein, alternatively known as hepatitis B core antigen, or HBcAg. During this 'window' in which the host remains infected but is successfully clearing the virus, IgM antibodies specific to the hepatitis B core antigen (anti-HBc IgM) may be the only serological evidence of disease. Therefore most hepatitis B diagnostic panels contain HBsAg and total anti-HBc (both IgM and IgG).
Shortly after the appearance of the HBsAg, another antigen called hepatitis B e antigen (HBeAg) will appear. Traditionally, the presence of HBeAg in a host's serum is associated with much higher rates of viral replication and enhanced infectivity; however, variants of the hepatitis B virus do not produce the 'e' antigen, so this rule does not always hold true. During the natural course of an infection, the HBeAg may be cleared, and antibodies to the 'e' antigen (anti-HBe) will arise immediately afterwards. This conversion is usually associated with a dramatic decline in viral replication.
end-stage-of-hepatitis-B
end stage of hepatitis B

Ground glass hepatocytes as seen in a chronic hepatitis B liver biopsy. H&E stain.
If the host is able to clear the infection, eventually the HBsAg will become undetectable and will be followed by IgG antibodies to the hepatitis B surface antigen and core antigen (anti-HBs and anti HBc IgG). The time between the removal of the HBsAg and the appearance of anti-HBs is called the window period. A person negative for HBsAg but positive for anti-HBs either has cleared an infection or has been vaccinated previously.
Individuals who remain HBsAg positive for at least six months are considered to be hepatitis B carriers. Carriers of the virus may have chronic hepatitis B, which would be reflected by elevated serum alanine aminotransferase (ALT) levels and inflammation of the liver, if they are in the immune clearance phase of chronic infection. Carriers who have seroconverted to HBeAg negative status, in particular those who acquired the infection as adults, have very little viral multiplication and hence may be at little risk of long-term complications or of transmitting infection to others.
PCR tests have been developed to detect and measure the amount of HBV DNA, called the viral load, in clinical specimens. These tests are used to assess a person's infection status and to monitor treatment. Individuals with high viral loads, characteristically have ground glass hepatocytes on biopsy.

 Prevention

Vaccines for the prevention of hepatitis B have been routinely recommended for infants since 1991 in the United States. Most vaccines are given in three doses over a course of months. A protective response to the vaccine is defined as an anti-HBs antibody concentration of at least 10 mIU/ml in the recipient's serum. The vaccine is more effective in children and 95 percent of those vaccinated have protective levels of antibody. This drops to around 90% at 40 years of age and to around 75 percent in those over 60 years. The protection afforded by vaccination is long lasting even after antibody levels fall below 10 mIU/ml. Vaccination at birth is recommended for all infants of HBV infected mothers. A combination of hepatitis B immune globulin and an accelerated course of HBV vaccine prevents perinatal HBV transmission in around 90% of cases.
hep-B-vaccine
hep B vaccine

All those with a risk of exposure to body fluids such as blood should be vaccinated, if not already. Testing to verify effective immunization is recommended and further doses of vaccine are given to those who are not sufficiently immunized.
In assisted reproductive technology, sperm washing is not necessary for males with hepatitis B to prevent transmission, unless the female partner has not been effectively vaccinated. In females with hepatitis B, the risk of transmission from mother to child with IVF is no different from the risk in spontaneous conception.
Those at high risk of infection should be tested as there is effective treatment for those who have the disease. Groups that screening is recommended for include those who have not been vaccinated and one of the following: people from areas of the world where hepatitis B occurs in more than 2%, those with HIV, intravenous drug users, men who have sex with men, and those who live with someone with hepatitis B.

Duration of vaccination

In 10- to 22-year follow-up studies there were no cases of hepatitis B among those with a normal immune system who were vaccinated, only rare chronic infections have been documented.

 Treatment

Acute hepatitis B infection does not usually require treatment and most adults clear the infection spontaneously. Early antiviral treatment may be required in fewer than 1% of people, whose infection takes a very aggressive course (fulminant hepatitis) or who are immunocompromised. On the other hand, treatment of chronic infection may be necessary to reduce the risk of cirrhosis and liver cancer. Chronically infected individuals with persistently elevated serum alanine aminotransferase, a marker of liver damage, and HBV DNA levels are candidates for therapy. Treatment lasts from six months to a year, depending on medication and genotype.
Although none of the available drugs can clear the infection, they can stop the virus from replicating, thus minimizing liver damage. As of 2008, there are seven medications licensed for treatment of hepatitis B infection in the United States. These include antiviral drugs lamivudine (Epivir), adefovir (Hepsera), tenofovir (Viread), telbivudine (Tyzeka) and entecavir (Baraclude), and the two immune system modulators interferon alpha-2a and PEGylated interferon alpha-2a (Pegasys). The use of interferon, which requires injections daily or thrice weekly, has been supplanted by long-acting PEGylated interferon, which is injected only once weekly. However, some individuals are much more likely to respond than others, and this might be because of the genotype of the infecting virus or the person's heredity. The treatment reduces viral replication in the liver, thereby reducing the viral load (the amount of virus particles as measured in the blood). Response to treatment differs between the genotypes. Interferon treatment may produce an e antigen seroconversion rate of 37% in genotype A but only a 6% seroconversion in type D. Genotype B has similar seroconversion rates to type A while type C seroconverts only in 15% of cases. Sustained e antigen loss after treatment is ~45% in types A and B but only 25–30% in types C and D.

 Epidemiology

 Prevalence of hepatitis B virus as of 2005.
In 2004, an estimated 350 million individuals were infected worldwide. National and regional prevalence ranges from over 10% in Asia to under 0.5% in the United States and northern Europe.
Routes of infection include vertical transmission (such as through childbirth), early life horizontal transmission (bites, lesions, and sanitary habits), and adult horizontal transmission (sexual contact, intravenous drug use)
The primary method of transmission reflects the prevalence of chronic HBV infection in a given area. In low prevalence areas such as the continental United States and Western Europe, injection drug abuse and unprotected sex are the primary methods, although other factors may also be important. In moderate prevalence areas, which include Eastern Europe, Russia, and Japan, where 2–7% of the population is chronically infected, the disease is predominantly spread among children. In high-prevalence areas such as China and South East Asia, transmission during childbirth is most common, although in other areas of high endemicity such as Africa, transmission during childhood is a significant factor. The prevalence of chronic HBV infection in areas of high endemicity is at least 8% with 10-15% prevalence in Africa/Far East.  As of 2010, China has 120 million infected people, followed by India and Indonesia with 40 million and 12 million, respectively. According to World Health Organization (WHO), an estimated 600,000 people die every year related to the infection.
In the United States about 19,000 new cases occurred in 2011 down nearly 90% from 1990.

 History

The earliest record of an epidemic caused by hepatitis B virus was made by Lurman in 1885.  An outbreak of smallpox occurred in Bremen in 1883 and 1,289 shipyard employees were vaccinated with lymph from other people. After several weeks, and up to eight months later, 191 of the vaccinated workers became ill with jaundice and were diagnosed as suffering from serum hepatitis. Other employees who had been inoculated with different batches of lymph remained healthy. Lurman's paper, now regarded as a classical example of an epidemiological study, proved that contaminated lymph was the source of the outbreak. Later, numerous similar outbreaks were reported following the introduction, in 1909, of hypodermic needles that were used, and, more importantly, reused, for administering Salvarsan for the treatment of syphilis. The virus was not discovered until 1966 when Baruch Blumberg, then working at the National Institutes of Health (NIH), discovered the Australia antigen (later known to be hepatitis B surface antigen, or HBsAg) in the blood of Australian aboriginal people. Although a virus had been suspected since the research published by MacCallum in 1947, D.S. Dane and others discovered the virus particle in 1970 by electron microscopy, By the early 1980s the genome of the virus had been sequenced, and the first vaccines were being tested

 

World Hepatitis Day, observed July 28, aims to raise global awareness of hepatitis B and hepatitis C and encourage prevention, diagnosis and treatment. It has been led by the World Hepatitis Alliance since 2007 and in May 2010, it got global endorsement from the World Health Organization.

References

1.      "Hepatitis B Fact sheet N°204". who.int. July 2014. Retrieved 4 November 2014.
2.      Raphael Rubin; David S. Strayer (2008). Rubin's Pathology : clinicopathologic foundations of medicine ; [includes access to online text, cases, images, and audio review questions!] (5. ed. ed.). Philadelphia [u.a.]: Wolters Kluwer/Lippincott Williams & Wilkins. p. 638. ISBN 9780781795166.
4.      Chang MH (June 2007). "Hepatitis B virus infection". Semin Fetal Neonatal Med 12 (3): 160–167. doi:10.1016/j.siny.2007.01.013. PMID 173361
Dot Not Forget To Share This Article On All Social Medias, Share With All Your Friends And Love Ones


0 comments: